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Solving Problems on Finite Concrete Logics with
the Help of a PC

Foat Sultanbekov1
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Three routines which may be used in the computer treatment of general finite
concrete logics are described. The results for some particular finite concrete
logics are presented.

1. INTRODUCTION

Treating finite OMPs with a computer is not an absolutely new area

(see, e.g., Kalmbach, 1983; Navara, 1994). So far as I know, however, a

computer investigation of finite concrete logics in the way we propose has

not yet been undertaken. It is essential that we develop routines that enable
us to examine finite concrete logics defined by generators. It is hoped that

the routines will be helpful for many investigators in, e.g., constructing

counteraxamples.

In Section 2, preliminaries are sketched on finite concrete logics. In

Section 3, we describe three developed routines: GENER, BIPOLAR, and

MINRE. In Section 4, the main section of this note, we discuss the results
obtained with their help. We deal with concrete logics of the form D ( L )

yielded by finite-point collections on the plane which are closely related to

the celebrated Zerbe±Gudder theorem (Zerbe and Gudder, 1985) and with

representations as a concrete logic for the OMPs En whose Greechie diagrams

are n-polygons with three atoms on each side.

2. PRELIMINARIES

Let V be a set. A concrete logic (c.l.) (cf. Gudder, 1979) on V is a

collection % of subsets of V satisfying (1) V P %, (2)X P % Þ V \X P %,

(3) X,Y P %, X ù Y 5 0¤ Þ X ø Y P %.
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Let E be an OMP with a full ( 5 order-determining) set of two-valued

finitely additive states. A representation (Sultanbekov, 1993) for E is an

arbitrary c.l. isomorphic to E as an OMP. Let ( V , %) be a representation for
E. % is called minimal (Sultanbekov, 1993) provided that " v P V $ X,

Y P % (X ù Y 5 { v }). Let V be a finite set and % a c.l. on V . The polar
(cf. Ovchinnikov, 1994) % 8 of % is defined as the set of all signed measures

m on the Boolean algebra of all subsets of V with m (X ) 5 0 for all X P %.

The set %8 8 of all X , V satisfying m (X ) 5 0 for every m P % 8 is obviously

a c.l. on V which we call the bipolar of %. % is called closed (Ovchinnikov,
1994) if % 5 %8 8 .

Let A1, . . . , Am , V . The A1, . . . , Am are called generators for the

least, with respect to inclusion, c.l. on V containing these. The c.l. is referred

to as generated by A1, . . . , Am.

Let E be an OMP. We call a block in E a maximal, with respect to

inclusion, ortogonal set of atoms in E. (We acknowledge that this definition
of a block is somewhat nonstandard.)

3. THE ROUTINES AND TESTS FOR THEM

Three routines in Turbo Pascal have been developed: GENER, BIPO-

LAR, and MINRE. In doing this, we managed to restrict ourselves to the

integer operations alone.

GENER. Let V 5 {1, . . . , n}. In the data file, *.dgn, the user specifies
the n, the number m of the generators, and the generators themselves as n1

n2 . . . nk , ni P {1, . . . , n} each. In the results files, *.atm and *.blk, all

atoms and all blocks of the generated c.l. are written. The processing time

is also specified. GENER was tested with the Gudder±Marchand logics

S (L, s), examined in Ovchinnikov (1992).

Let n 5 Ls, where s $ 3, L $ 2, and let S (L,s) be the c.l. on V with
{0, 1, . . . , L 2 1} 1 k (modLs), k P {0, 1, . . . , Ls 2 1} as generators. For

the following couples (L, s) the formulas s L and (s!)L 2 1 for the numbers of

atoms and blocks in S (L, s), respectively, resulting from Ovchinnikov (1992)

have been confirmed: (2, 8), (3, 5), (4, 4), (5, 3), (6, 3), and (7, 3).

BIPOLAR. Given a c.l. % on V , the user should specify %8 (in the

data file *.dbp) by defining the coefficients of the general solution of the

corresponding homogeneous linear system multiplied by a suitable integer
(which makes them all integer). In the results files, *.atm and *.blk, all

atoms and all blocks in %8 8 and the processing time are specified. For the

above couples (L, s) the closedness of S (L, s) [which was proved in Ovchinni-

kov (1992) for all L $ 2 and s $ 3] has been confirmed.
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MINRE. Given a finite OMP E with a full set S of two-valued states,

the MINRE finds all minimal full subsets of S (and thus all minimal represen-

tations for E with all point states contained in S). Also, additionally given a
subgroup of the automorphism group of E, the MINRE can find the representa-

tions up to the subgroup. To do this, in the data file, *.dmr, the user should

specify the cardS, the number of atoms in E, and the atoms themselves. The

user may (if he or she knows) specify a collection of automorphisms for the

corresponding representation. After stopping to run the MINRE outputs the

results file *.mir. To test the routine, some results of Sultanbekov (1993)
have been confirmed. In particular, the number of all minimal representations,

up to the group of all automorphisms, for E6 has been confirmed to be equal

to 10.

4. NEW RESULTS OBTAINED WITH GENER, BIPOLAR, AND
MINRE

Let L , R2 be finite. Denote by D ( L ) the c.l. on L generated by all
subsets of the following form: p 2 1

1 ({r}), p 2 1
2 ({r}) or ( p 1 1 p 2)

2 1 ({r}),

where p 1(x, y) 5 x, p 2(x,y) 5 y ((x, y) P L ), and r P R.
We have made use of GENER together with BIPOLAR to establish the

closedness for all D n 5 D ( L ), where L 5 {0,1, . . . , n 2 1}2 and 1 # n #
10. For every such n, all atoms (in particular, their number, An) and all blocks

(in particular, their number, Bn) have been found. Denote by Mn (resp., mn)
the maximal (resp., minimal) number of atoms in a block of D n. Let Cn stand

for the maximal number of elements of an atom in D n. The numbers are

given in Table I. A special program has been developed to compare the sets

of atoms in % and % 8 8 .
The MINRE has enabled us to find all minimal representations for E7.

Their number (up to the group of all automorphisms) turns out to be equal
to 546. For every k P N, Table II contains the number N (k) of all minimal

representations ( V (k), %(k)) for E7 with card V (k) 5 k up to the group of

all automorphisms.

Table I

n An Bn Cn Mn mn n An Bn Cn Mn mn

1 1 1 1 1 1 6 191 382 16 11 5

2 4 1 1 4 4 7 357 726 23 13 5

3 12 6 2 6 6 8 621 1307 32 15 5

4 39 60 5 7 5 9 1017 2154 44 17 5

5 91 165 10 9 5 10 1571 3356 52 19 5



202 Sultanbekov

Table II

k N (k) k N (k)

10 1 15 130

11 2 16 89

12 45 17 7

13 84 Other 0

14 188

For each of the 10 minimal representations for E6 mentioned in Section

3, their bipolars have been found with BIPOLAR.
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